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ABSTRACT 
The stream database is still an emerging area of research, with im-
plementations focusing mainly on supporting low-latency, high-
volume data processing. Similarly, while differentially-private 
streaming algorithms have been explored in great detail, there is a 
noticeable lack of practical implementations. The goal for our pro-
ject is to remedy this problem by creating a data-stream manage-
ment system (DSMS) with the ability to do operations in a privacy-
preserving manner. This includes aggregates such as COUNT, which 
has been discussed comprehensively in the literature, as well as 
SUM and AVERAGE which have not formally been covered by many 
researchers. Our DSMS also supports stream-to-stream operators, 
windowing operators on both the number of rows and time, as well 
as the standard relational operators found in the traditional rela-
tional database management system. 
 
Using the paradigms of the Erlang programming language, our 
DSMS is implemented as many lightweight processes that com-
municate with each other via asynchronous message-passing. A 
big-picture demonstration that shows the success of our project is a 
web view with a dynamic chart using server-sent events to push the 
results of a continuous query to any open connections. Although 
there are definitely more features to be added, the current combina-
tion is likely unique to YoctoDB and not found elsewhere. 
 
Categories and Subject Descriptors 
K.4.1 [Computers and Society]: Privacy; H.2.4 [Database Ap-
plications]: Statistical Databases 
 
General Terms 
Algorithms, Databases, Privacy, Private Data Analysis, Streaming 
 
 
1. INTRODUCTION 
1.1 Introduction 
 
The name for our project, YoctoDB, draws from the educational 
database, NanoDB, which Donnie Pinkston wrote for a database 
system implementation course at the California Institute of Techno-
logy (CS 122). As the name suggests, with the prefix yocto- being 
1015 times smaller than nano-, our system has a narrow focus and 
does not support certain features of databases that extend past the 
scope of a single-term project. 
 
Presently, all code is hosted on GitHub and can be found at 
https://github.com/visemet/yocto-db. 

1All work and research was done entirely at the California Institute 
of Technology. 

1.2 Motivation 
 
Typically, databases deal with data that is relatively static and up-
dates slowly over time. However, we can imagine cases where the 
data is actually a stream: an unbounded, time-ordered sequence of 
tuples. For instance, with a stock ticker, orders to buy and sell a 
security come in at a particular time, and in rapid succession. Sim-
ilarly, for networked traffic, packets arrive from a host at a partic-
ular time. 
 
Using a traditional database, if we periodically query the database 
with a time-based window of the data, we can compute aggregate 
results over that snapshot. The drawback to this approach is that as 
the window slides forward in time, the aggregate would have to be 
recomputed from scratch; no intermediate results are stored since 
the system does not keep track of any of its partial work. This is not 
ideal for systems that need to handle streams, like stock ticker sys-
tems, which encounter high volumes and need timely computa-
tions. A data-stream management system takes advantage of the in-
cremental nature of such computations and stores partial results for 
faster calculations. 
 
However, the stream nature of the database invites attacks on pri-
vacy. With a continuous query, an attacker can easily discern the 
effects on the overall result of each additional value in the stream. 
This can be an issue if the database holds sensitive information such 
as medical information or electricity demand. For example, if an 
attacker were able to view the instantaneous electricity usage of a 
house, he could potentially discern not only when the occupants are 
active, but also what appliances are in use. Clearly this is sensitive 
information. However, with differential privacy, we can guaran-
tee—for a certain level of privacy—protection against such attacks, 
while minimizing the amount of error added. YoctoDB implements 
privacy-preserving aggregates for the most common operations: 
SUM, COUNT, and AVERAGE. 
 
 
2. PRIOR WORK 
2.1 Data-Stream Management Systems 
 
2.1.1 STREAM 
STREAM is a DSMS implemented by Stanford University [1]. It 
assumes tuples in the stream arrive in order of increasing time-
stamp, and conform to one schema. Updates to relations are also 
expected to arrive in order of increasing timestamp with a fixed 
schema. STREAM supports writing queries using a modified form 
of the Continuous Query Language (CQL). 
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STREAM operates in two phases: (1) registering streams, relations, 
and queries; (2) executing the queries. Dividing its operation into 
two phases allows for static optimization of the queries; these opti-
mizations are performed by first generating a plan in relational al-
gebraic terms, performing optimizations by standard reductions, 
and then converting the plan into an executable query tree. Since 
all streams and relations have to be pre-registered, STREAM uses 
a table manager to hold the schemas and names of all streams and 
relations. Scheduling is done via a round-robin mechanism, and a 
memory manager is implemented for additional page-level optimi-
zation. 
 
2.1.2 Aurora 
Aurora is a DSMS created via collaboration of Brandeis University, 
Brown University, and MIT [2]. It is intended to solve both the 
problems of processing real-time data streams and that of archival 
time-stamped datasets. The main research focuses of this project 
include memory-aware and QoS-aware scheduling, load-shedding 
to handle burstiness, and methods to store synopses. Aurora sup-
ports basic, sliding, tumbling, and resampling windows. It also sup-
ports filtering, mapping, grouping, and joins. In particular, joins are 
done on pairs of tuples which have “close-enough” timestamps. 
 
Aurora also attempts dynamic continuous query optimization. This 
is done by the following mechanism: 
 

1. Gathering statistics on operators once a data stream is flow-
ing through the system. 

2. Pausing the flow between two points after sufficient statistics 
have been gathered. 

3. Rearranging the set of processes between those two points in 
an optimal fashion. 

4. Allowing tuples to continue flowing between the two points. 
 
The mechanism is repeated on various segments of the data 
stream’s path, and an optimizer is expected to run as a background 
task, cycling through each segment. Load-shedding is triggered 
based on static and runtime analysis, and is implemented by either 
dropping or filtering tuples. 
 
2.1.3 Transactions and Data-Stream Processing 
Conway [3] argues that transactions are important for data stream 
processing in relation to isolation, durability, and crash recovery. 
The paper presents specific examples and explains how they might 
be implemented. Transactions are considered in relation to win-
dows, which are presented as the primary unit of isolation for data-
stream management systems. In addition, great detail is given about 
the basics of DSMSs, such as how to break them down into data 
streams, continuous queries, query processors, and clients. A com-
parison of the traditional database management systems to a DSMS 
is also done, with the major differences highlighted. 
 
Conway uses a relation-stream join as a case study in order to help 
illustrate the window isolation model, where snapshots are taken 
for each window that exists and operations are performed based on 
relevant snapshots. To improve durability, the paper proposes writ-
ing tuples in units of windows—as new windows are produced, tu-
ples in the old window are flushed to disk. This method guarantees 
some level of atomicity, which is important in a DSMS. 
 
 
 
 

2.2 Private Streaming Algorithms 
 
Various papers [4, 5, 6] have discussed data privacy in streams but 
few have implemented data privacy in an actual DSMS. However, 
these papers are helpful in outlining the privacy-preserving algo-
rithms that are implemented in YoctoDB. 
 
2.2.1 Differential Privacy under Continual 

Observation 
Dwork et al. [4] discuss the concept of pan-privacy in streaming 
and compare it to the definition of 𝜀𝜀-differential privacy. In partic-
ular, the paper outlines the event-level private counter and proves 
that it satisfies 𝜀𝜀-differential privacy properties with a logarithmi-
cally-bounded error. The paper also briefly discusses the Laplace 
distribution and mechanism, which is useful in designing privacy-
preserving algorithms. There is also discussion about the transfor-
mation of a generic single-output algorithm (one that returns output 
after all the data has come in) from a blocking operation into one 
that continually produces output as data is received. 
 
2.2.2 Private and Continual Release of Statistics 
In [5], concepts of pan-privacy, consistency, and p-sums—useful 
intermediate results from which an observer can estimate the count 
of data at every time step—are covered. The paper provides various 
algorithms for yielding differentially private counts, which gene-
rally become more complex as the error bounds get tighter. 
 
The most useful of the provided algorithms is the Binary Mecha-
nism, which uses a noisy binary frequency tree to compute counts. 
Other algorithms which have been adapted for YoctoDB include 
the Simple Counting Mechanism II as well as the Hybrid Mecha-
nism (see §6.2.2). A major contribution of this paper is a method to 
convert any bounded 𝜀𝜀-differentially private algorithm into an 𝜀𝜀-
differentially private unbounded algorithm, which is important for 
streamed data. Unbounded mechanisms do not require prior know-
ledge of the end time of the algorithm. Therefore the algorithm will 
ensure 𝜀𝜀-differential pan privacy for infinite time, without much of 
an increase in the error. 
 
2.2.3 Private Decayed Predicate Sums on Streams 
In [6] they introduce algorithms to privately compute various types 
of sums, including sliding windows and exponential decayed sums, 
in which recent data should contribute more to a sum than distant 
data. They provide algorithms for running decayed sums, as well as 
time-bounded sums, and then reduce the running sum algorithm to 
one for sliding windows. Most importantly, they introduce a notion 
related to 𝜀𝜀-differentially privacy similar to local sensitivity, which 
allows them to prove that adding nearly identical noise to COUNT 
will provide 𝜀𝜀-differentially privacy sums.  
 
 
3. TOOLS AND DEFINITIONS 
3.1 Erlang 
 
Our database is implemented in Erlang for several features that we 
found well-aligned with the purposes of a data-stream management 
system. 
 



• Actor Model. Each plan node is represented as a lightweight 
process that communicates with others via asynchronous mes-
sage-passing, which forms the exact correspondence with a 
push-based model. 

• Supervision. Erlang has a “let it crash” philosophy, such that 
if a processes dies for whatever reason, its supervisor can 
choose to restart it. This enables each query to manage their 
spawned processes in isolation of the others. 

• Erlang Term Storage (ETS). Provides the ability to store 
very large quantities of data in an Erlang runtime system with 
constant-time access [7]. This allows the partial results of a 
computation to be stored in memory for fast and easy access. 

 
3.2 Abstract Semantics 
 
3.2.1 Tuples and Schema 
The standard data type stored in YoctoDB is the tuple, which is 
essentially an ordered list of data, where each element in the list 
represents the value for a column based on a schema. The schema 
is a list where each element describes the type and name of a col-
umn. Each element in the tuple following this schema will have the 
specified type and name found in the schema. 
 
For example, we may have the schema and tuples found in Table 1. 
 

SCHEMA 
(type) 

name 
(string) 

id 
(integer) 

state 
(string) 

amount 
(float) 

Tuple 1 Max 134753 MI 5436.43 

Tuple 2 Angela 653435 CA 76.44 

Tuple 3 Kalpana 484957 PA 643.66 

Tuple 4 Adam 593822 CA 483.20 

Tuples 5 Katrina 739492 CA 134.20 
 

Table 1: An example of a schema and tuples. 

3.2.2 Predicates 
A predicate is a function 𝑃𝑃(𝑋𝑋) ∈ {true, false} which takes a tuple 
and returns true or false, depending on if the tuple 𝑋𝑋 satisfies the 
predicate. Generally, a predicate comes in two forms: 
 
• Comparison of a column to a value. Compares the value of 

a tuple at a particular column to a given value. 
• Comparison of a column to another column. Compares the 

value of a tuple at a column with the value at another column. 
 
The possible comparisons are mathematical operators, which are 
the following: 
 
• = (equal) 
• > (greater than) 
• >= (greater than or equal to) 
• < (less than) 
• <= (less than or equal to) 
• != (not equal) 

 
For example, for data of Table 1, if the predicate is amount >= 500, 
where amount is the column name, >= is the operator, and 500 is the 
amount to compare to, then when applied onto the tuples, the result 
can be found in Table 2. 

SCHEMA name id state amount 

Tuple 1 Max 134753 MI 5436.43 

Tuple 3 Kalpana 484957 PA 643.66 
 

Table 2: Result of predicate amount >= 500 onto Table 1. 

3.2.3 Sequence of Tuples 
Definition 1. (Stream) A stream 𝜎𝜎 is an unbounded, time-ordered 
sequence of tuples. Each tuple in the stream has a timestamp, and 
we define 𝜎𝜎(𝑡𝑡) as the set of tuples in the stream with a particular 
timestamp 𝑡𝑡. 

Definition 2. (Relations and Diffs) A relation 𝜌𝜌(𝑡𝑡) is a static col-
lection (multi-set) of tuples at a particular instance in time. Changes 
that occur over time to a relation are represented by the system in 
the form of a diff, or more specifically, as tuples denoted with a ‘+’ 
(PLUS) or ‘−’ (MINUS) symbol, which indicate that a tuple has been 
inserted into or deleted from the relation, respectively. 

3.2.4 Operators 
The operators listed in Table 5 are implemented in YoctoDB and 
come in 4 types: 
 
• stream → stream, relation → relation. The input and output 

are of the same type. 
• relation → stream. Models the relation as a stream by yield-

ing tuples at specific intervals. 
• stream → relation. Takes a sliding window over a stream. 
• relation × relation → relation. Combines two relations in 

order to form a single relation. 
 
3.2.5 Grouping 
Grouping involves splitting tuples into groups, based on the values 
at particular columns. Tuples with the same values are grouped to-
gether, and aggregates can be applied to individual groups. We can 
examine the data in Table 3. 
 

State Amount 
CA 5 
CA 10 
CA 7 
TX 2 
TX 3 

 
Table 3: Table containing possible tuples to group. 

When grouping on the column “State”, an aggregate such as a SUM 
can be applied to the column “Amount,” to get the result found in 
Table 4. 
 

State SUM(Amount) 
CA 5 + 10 + 7 = 22 

TX 2 + 3 = 5 
 

Table 4: Result of grouping Table 3 by “State” and applying 
the SUM aggregate to the “Amount” column.  



Name Description Operator Type 

select Includes only those tuples satisfying a particular predicate. 

stream → stream 
relation → relation 

project Reduces the arity of a tuple by extracting certain column values. Can also rename 
and reorder columns. 

aggregate Performs grouping and aggregation, and optionally in an 𝜀𝜀-differentially private 
manner. SUM, COUNT, MIN, MAX, AVERAGE, STDDEV, VARIANCE. 

join Computes the Cartesian product of two relations. relation × relation → relation 
row-window Uses a particular number of rows to make a sliding window over a stream. 

stream → relation 
time-window Uses a particular time interval to make a sliding window over a stream. 
istream Creates a stream from the newly-inserted tuples in a relation. 

relation → stream dstream Creates a stream from the newly-deleted tuples in a relation. 
rstream Creates a stream containing all the tuples currently present in the relation. 

 
Table 5: List of operators and their types. 

3.3 Differential Privacy 
 
3.3.1 Differential Privacy in the Traditional Setting 
When our database works with sensitive data, it is important that 
any aggregate applied onto the data does not leak any information 
about any one individual. An aggregate is a type of a mechanism, 
which is any function that is applied to a set of tuples to output some 
kind of result. Mechanism privacy is formally defined in terms of 
differential privacy, as first discussed by [4]. A mechanism is con-
sidered differentially private if the output is indistinguishable when 
run on two nearly identical input streams. An adversary who ob-
serves the data is unable to figure out whether or not an event took 
place by looking at the results of the mechanism. 
 
Definition 3. (Differential Privacy) Two input streams 𝜎𝜎 and 𝜎𝜎′ are 
adjacent if they differ by at most one tuple 𝑡𝑡. A mechanism ℳ is 
𝜀𝜀-differential private if for any adjacent streams 𝜎𝜎 and 𝜎𝜎′, and for 
any subset of the outputs of the mechanism 𝑆𝑆 ⊆  Range(ℳ), 
 

 Pr[ℳ(𝜎𝜎) ∈ 𝑆𝑆] ≤ exp(𝜀𝜀) ⋅ Pr [ℳ(𝜎𝜎′) ∈ 𝑆𝑆].  (1) 
 
3.3.2 Laplace Distribution 
When designing algorithms to ensure 𝜀𝜀-differential privacy, the La-
place distribution is generally used to introduce noise to the data. 
The Laplace distribution, denoted by Lap(𝑏𝑏), which is a distribu-
tion with mean 0 and variance 2𝑏𝑏2, has the following properties: 
 
Probability density function: 
 

𝑓𝑓(𝑥𝑥) =
1

2𝑏𝑏
exp�−

|𝑥𝑥|
𝑏𝑏
�. 

 
Cumulative distribution function: 
 

𝐹𝐹(𝑥𝑥) =
1
2 +

1
2 sgn(𝑥𝑥)�1 − exp�−

|𝑥𝑥|
𝑏𝑏 ��. 

 
Inverse cumulative distribution function: 
 

𝐹𝐹−1(𝑝𝑝) = −𝑏𝑏 sgn(𝑝𝑝 − 0.5) ln(1 − 2|𝑝𝑝 − 0.5|). 
 
The inverse cumulative distribution function (CDF) is useful in de-
signing differentially private mechanisms. [4] showed that a mech-
anism preserves differential privacy if Laplace noise is added. 

3.3.3 Pan Privacy 
A pan-private mechanism is one that can preserve differential pri-
vacy even if an adversary has access to the intermediate states of 
the mechanism. For example, if an aggregate such as COUNT is run 
on a stream, it is differentially private if the result returned is similar 
to the actual value, but with some level of noise. However, it is not 
pan-private because if an adversary accessed the database during 
its calculations, the individual data points are exposed and privacy 
is then compromised. 
 
 
4. SYSTEM ARCHITECTURE 
4.1 Processes 
 
We model each node in the plan as an independent process that 
communicates with each other via asynchronous message passing. 
Our implementation uses a publish-and-subscribe model, where 
each process listens for input from another process and notifies 
other processes of its own computed results. 
 
4.2 Synopses and Storage 
 
With every aggregate, at least one intermediate value is stored. For 
example, when computing a moving sum, each partial sum over the 
several intervals must be kept track of. We refer to this state as a 
synopsis, and choose to store it in ETS table. 
 
Relations and the corresponding diffs are also stored in ETS tables, 
as was detailed in §3.2.3. 
 
4.3 Query Execution 
 
The application starts a top-level supervisor as the named process 
ydb. This is the entry-point for the user of the system to register an 
input stream or execute a query. There is a clear logical division be-
tween an input stream and a query, so these processes are managed 
separately. 
 
 
  



 
Figure 1: The ydb application supervisor hierarchy. 

A query is responsible for supervising all processes spawned as a 
result of its specification. The planner wires together the listener 
structure, so that each process emits its results to the correct pro-
cesses down the chain. Figure 1 illustrates this hierarchy structure. 
 
4.4 Input 
 
YoctoDB supports allowing input into the system either from a file 
(§4.4.1) or over a socket (§4.4.2). In both cases, the data must be 
properly formatted Erlang tuples (comma-separated values, en-
closed in curly braces). 
 
4.4.1 File Input 
Input via file is configurable by specifying a batch_size to control 
the number of terms to read from the file at once and a poke_freq 
to control how often to do so. We commonly use this plan node to 
verify the correct behavior of other operators and for any demon-
strations given. 
 
ydb_sup:register_input_stream({ 
    weekday1 
  , ydb_branch_file_input 
  , [ 
        {filename, “data/weekday1.dta”} 
      , {batch_size, 1} 
      , {poke_freq, 100} 
    ] 
  , [] 
  , [{group, [ 
        {group, {1, atom}} 
      , {time, {2, int}} 
      , {occ, {3, int}} 
      , {power, {4, float}} 
      , {light, {5, float}} 
      , {app, {6, float}} 
    ]}] 
  , [{group, {min, time}}] 
}). 
 

 
Figure 2: Example file input query. 

4.4.2 Socket Input 
Data is received in binary format on a port specified by the user. 
YoctoDB can handle any number of incoming connections. 
 
 

4.5 Output 
 
4.5.1 File Output 
The results of a query are appended to a file. Each line contains a 
ydb_tuple record type, which includes the timestamp of the tuple’s 
arrival into the system and its associated data payload. We define 
the format as {ydb_tuple, Timestamp, Data}. 
 
4.5.2 Socket Output 
The results of a query are sent over a socket to a particular host 
address and port number, with the data encoded in a binary format 
according to the BERT specification [8]. 
 
4.5.3 HTTP Output 
In addition to communication over a socket, YoctoDB also supports 
sending POST requests with the results attached as the data pay-
load. This is convenient for when writing a web application, as it 
follows CRUD semantics. 
 
 
5. SYSTEM IMPLEMENTATION 
5.1 Operator Implementation 
 
5.1.1 Incremental and Non-incremental Operators 
Both incremental and non-incremental operators are generically 
supported on YoctoDB via the aggr_node module. Our notion of 
an incremental algorithm is one that is able to compute the next 
result from only its previous result and the received data. This is an 
obvious improvement for when the aggregate is computed on a 
stream, as opposed to an equivalent definition of an infinitely-sized 
window. On the other hand, with a non-incremental algorithm the 
aggregate is taken over a window to compute a single partial result, 
and then again over all partial results. 
 
5.1.2 SUM, COUNT, MIN, MAX, AVERAGE 
The incremental version of these aggregates are implemented 
straight from their mathematical definitions, and the non-incremen-
tal version relies mainly on the functions in the lists module. 
 
5.1.3 VARIANCE, STDDEV 
Since the input stream is potentially unbounded, the variance and 
standard deviation cannot be efficiently calculated in the typical 
manner of finding the mean and computing the sum of the square 



differences. Rather, an online algorithm [9] is implemented, which 
involves using the power sum average. 
 
Upon receiving a new data point 𝑋𝑋, these intermediate values are 
updated in the following manner. 
• 𝒏𝒏 denotes the current number of data points. Its value is incre-

mented by 1. 
• 𝝁𝝁 denotes the current mean of the data. Its value is incremented 

by (𝑋𝑋 − 𝜇𝜇)/𝑛𝑛, which is the contribution of 𝑋𝑋 to the mean. 
• 𝝈𝝈� denotes the power sum average. Its value is incremented by 

(𝑋𝑋2 − 𝜎𝜎�)/𝑛𝑛, which is the contribution of 𝑋𝑋 to the power sum 
average. This essentially stores the sum of the squares. 

 
The variance is then just equal to 
 
 

 (𝜎𝜎�𝑛𝑛2 − 𝜇𝜇2𝑛𝑛2)
𝑛𝑛(𝑛𝑛 − 1) =

𝜎𝜎�𝑛𝑛 − 𝑛𝑛𝜇𝜇2

𝑛𝑛 − 1 . (2) 
 

 
This is essentially the sum of the squares minus the square of the 
sum, i.e. the variance. 
 
5.1.4 Joins 
We support taking the Cartesian product of two relations, which 
involves joining the values found in both relations to form a single 
relation. A 𝜃𝜃-join is equivalent to a join operation followed by a 
select operation. The Cartesian product is “signed” in the sense that 
a ‘+’ (PLUS) tuple from the left relation is joined only with a ‘+’ 
(PLUS) tuple from the right relation (where “left” and “right” are 
assigned according to the order in the query definition), and simi-
larly for ‘−’ (MINUS) tuples. 
 
The typical approach that is taken with a join implementation on 
‘+’ (PLUS) and ‘−’ (MINUS) tuples is to store in a synopsis the cur-
rent representation of the relation. When a new tuple is received 
from either the left or right relation, it is applied to the correspond-
ing synopsis and the join is performed between the tuple and the 
state of the other relation in the same manner as previously de-
scribed (according to its sign). However, these systems also mainly 
use a pull-based mechanism of storing tuples in a queue; the next 
tuple is retrieved from either the left or right queue in timestamp 
order [1]. 
 
Our implementation is equivalent, but does not require this addi-
tional memory for a synopsis. We instead define the notion of “for-
ward” and “backward” joins as follows. A forward-join is when a 
received diff is and joined with diffs of a later period, and a back-
ward-join is when a received diff is joined with diffs of an earlier 
or current period. The term history size is used to measure the num-
ber of diffs between a ‘+’ (PLUS) tuple and its corresponding ‘−’ 
(MINUS) tuple from a windowed stream, which also reflects the 
number of diffs to join forward with. Notice that a left forward-join 
performs an identical operation as a right backward-join, except 
that a left diff is received rather than a right diff. 
 
5.1.5 Row and Time Windows 
The windowing operator partitions a stream of tuples into a series 
of diffs. When a tuple is received, a ‘+’ (PLUS) tuple is recorded in 
an ETS table; a ‘−’ (MINUS) tuple is recorded in an ETS table that 
is sent after a certain number of rows or amount of time has passed. 
The range of a sliding window refers to the duration that the tuple 
remains in the relation. An update is sent with a parameterized fre-
quency, so each diff corresponds to a particular unit size. 

The row window partitions the stream based on a specified number 
of rows of tuples arrived. Similarly, the time window partitions 
based on the timestamps of the tuples. 
 
There is a special caveat with the time window when dealing with 
a sporadic input stream. Since we use a push-based model for our 
system, data must enter in order more data to exit. However, con-
sider the case of studying seismology data above a certain thresh-
old; it would be very inconvenient to find out about the results of 
one earthquake only after another has already occurred. An appro-
priate mechanism to solve this issue is to send clock events through 
the system to flush out results, which mimics the effects of a pull-
based system. We choose to go one step further by allowing the 
length of the timer to adjust with the pace of the received input in 
real-time according to the formula [9] with 𝛼𝛼 = 0.2. 
 
 

 Sample =
Now − LastTimestamp
CurrTime − PrevTime  (3) 

 

 
ArrivalRate = 𝛼𝛼 ⋅ PrevArrivalRate + (1 − 𝛼𝛼) ⋅ Sample. 

 
Note that because slight delays in system time may affect the output 
of the windowing operation, input streams that occur at regular in-
tervals are more predictably processed by row windows rather than 
time windows. 
 
5.2 Query Structure 
 
The specification for a query is represented as a series of nested 
tuples. The first element refers to the type of operator. The next—
possibly several—elements are the arguments taken by the plan 
node for its initialization. The remaining—usually one—element is 
considered the child of the plan node in the typical tree structure 
given by the relational algebra definition of the query, and also re-
presents the plan node to which the current one listens for incoming 
results. Consider the input stream weekday1 as seen in §4.4.1. The 
query in Figure 3 computes a moving average over the last 10 
minutes of appliance electricity demand every 2 minutes. 
 
InputStream = {input_stream, weekday1, group}. 
ProjectNode = {project, [app], InputStream}. 
AvgNode = { 
    {aggr, avg, []} 
  , [ 
      {history_size, 5} 
    , {columns, [app]} 
    , {result_name, app_avg} 
    , {result_type, float} 
    , {eval_fun, (fun ydb_aggr_funs:identity/1)} 
    ] 
  , {row_window, {10, rows}, {2, rows}, ProjectNode} 
}. 
IStream = {istream, AvgNode}. 
FileOutput = {file_output, “results.out”, IStream}. 
 
ydb_sup:register_query({ 
    weekday1 
  , FileOutput 
}). 
 

 
Figure 3: Query to compute the moving average over the last 
10 minutes of appliance electricity demand. The results are 

appended to the file results.out. 



5.3 Displaying Results 
 
Along with the DSMS implementation, we created a web applica-
tion to view the results of a query graphically in order to show the 
real-time nature of the system. The source for this component of 
the project is available at https://github.com/visemet/ydb-nodejs 
and has also been deployed to Heroku. 
 
Rather than writing the results of the query to a file, we are able to 
view them on a dynamically-updating graph by changing the File-
Output variable to HttpOutput as seen in Figure 4.  
 
HttpOutput = {http_output, “http://secure-coast-
5416.herokuapp.com/demo/1/stream”, IStream}. 
ydb_sup:register_query({ 
    weekday1, HttpOutput 
}). 
ydb_branch_file_input:do_read(weekday1). 
 

 
Figure 4: Query to send results to our web view. 

After executing the query, the live results may be viewed over any 
time range. 
 

 
 

Figure 5: Our web view of appliance electricity demand. 

 
6. DATA PRIVACY IMPLEMENTATION 
6.1 Introduction 
 
The implementation of privacy-preserving operators mostly fol-
lows that found in [5]. The mechanisms are all of a similar structure 
such that a new privacy-preserving mechanism can easily be ex-
tended from the current implementations; they mainly involve the 
addition of noise drawn from a Laplace distribution on the interme-
diate states of the mechanism, as well as its output. 
 
6.2 Counting Mechanisms 
 
6.2.1 Binary Mechanism 
The Binary Mechanism is a mechanism that acts on a time 𝑇𝑇-
bounded sequence of data. For every time 𝑡𝑡 ≤ 𝑇𝑇, a fresh random 
variable is drawn from the Laplace distribution Lap(log(𝑇𝑇) 𝜀𝜀⁄ ) and 
added to the actual value lg(𝑡𝑡) times. The counts are stored in a 
binary interval table, with each interval having noise added once. 
Thus, the private-count at time 𝑡𝑡 is the sum of the private-counts of 
the preceding intervals. 

Definition 4. (p-sum) A p-sum is a partial sum of consecutive items. 
Let 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗. Then the notation Σ[𝑖𝑖, 𝑗𝑗]: = ∑ 𝜎𝜎(𝑡𝑡)𝑗𝑗

𝑡𝑡=𝑖𝑖  is used to de-
note a partial sum involving items 𝑖𝑖 through 𝑗𝑗 in the binary interval 
table. 
 
The pseudocode of the Binary Mechanism is illustrated in Algo-
rithm 1, as described by [5]. 
 
Algorithm 1: Binary Mechanism ℬ 
Input: Time upper bound 𝑇𝑇, privacy parameter 𝜀𝜀, stream 𝜎𝜎. 
Output: At each time step 𝑡𝑡, output estimate ℬ(𝑡𝑡). 
Initialization: Each 𝛼𝛼𝑖𝑖 and 𝛼𝛼�𝑖𝑖 are initialized to 0. 
𝜀𝜀′ ← 𝜀𝜀/ log𝑇𝑇  
for 𝑡𝑡 ← 1 to 𝑇𝑇 do 
        Express 𝑡𝑡 in binary form: 𝑡𝑡 = ∑ Bin𝑗𝑗(𝑡𝑡) ⋅ 2𝑡𝑡𝑗𝑗  
        Let 𝑖𝑖 ≔ min�𝑗𝑗 ∶ Bin𝑗𝑗(𝑡𝑡) ≠ 0� 
 
        // Previous value of 𝛼𝛼𝑖𝑖 is overwritten 
        // 𝛼𝛼𝑖𝑖 = ∑[𝑡𝑡 − 2𝑖𝑖 + 1, 𝑡𝑡] is a p-sum involving 2𝑖𝑖 items 
        for 𝑗𝑗 ← 0 to 𝑖𝑖 − 1 do 
                𝛼𝛼𝑗𝑗 ← 0, 𝛼𝛼�𝑗𝑗 ← 0 
        end 
 
        𝛼𝛼�𝑖𝑖 ← 𝛼𝛼𝑖𝑖 + Lap(1 𝜀𝜀′⁄ ) 
        // 𝛼𝛼�𝑖𝑖 is the noisy p-sum 𝛴𝛴�[𝑡𝑡 − 2𝑖𝑖 + 1, 𝑡𝑡] 
 
        Output the estimate at time 𝒕𝒕: 
        ℬ(𝑡𝑡) ← ∑ 𝛼𝛼�𝑗𝑗𝑗𝑗∶Bin𝑗𝑗(𝑡𝑡)=1  
end 
 
 
6.2.2 Hybrid Mechanism 
The Hybrid Mechanism is a mechanism that transforms a time-
bounded mechanism into an unbounded one (there is no special re-
quirement to know the upper bound 𝑇𝑇). In particular, we use the 
Hybrid Mechanism to transform the (bounded) Binary Mechanism 
into an unbounded mechanism that operates on an infinite stream 
of data. This is done by combining the Binary Mechanism ℳ with 
an unbounded mechanism called the Logarithmic Mechanism ℒ.  
 
Specifically, ℒ outputs a noisy p-sum Σ�[1, 𝑡𝑡] every time 𝑡𝑡 for which 
𝑡𝑡 is a power of 2. For any time 𝑡𝑡 that is not a power of 2, ℳ outputs 
a noisy p-sum Σ�[𝑇𝑇𝑡𝑡 , 𝑡𝑡], where 𝑇𝑇𝑡𝑡 is the greatest power of two smaller 
than 𝑡𝑡. By adding at most two p-sums, the Hybrid Mechanism can 
always output the total count at any time 𝑡𝑡. 
 
6.3 Summing and Averaging Mechanisms 
 
The summing and averaging mechanisms are extensions of the Hy-
brid (counting) Mechanism. While the counting mechanism adds 1 
to the running total for each bit in the stream, the summing mecha-
nism adds the actual value of each bit in the stream to the running 
total. From the result in [6], we know that we can add the same 
noise as in the counting mechanism and still have 𝜀𝜀-differential pri-
vacy.  
 
To find a privacy-preserving average, our mechanism first com-
putes a differentially-private sum [6] and divides by the true count. 
The result is a noisy average. 
 
 
 

https://github.com/visemet/ydb-nodejs


6.4 Analysis 
 
6.4.1 Values of 𝜀𝜀 
𝜀𝜀 is the parameter that controls the variance of the noise added to 
the data. A smaller 𝜀𝜀 provides a stronger privacy guarantee. How-
ever, most of the literature on differential privacy avoids discussing 
a specific value for 𝜀𝜀. [10] suggests values between 0.01 and 10, 
but concludes that the optimal value depends on the actual dataset. 
 
For the purposes of analyzing the effectiveness of our privacy-pre-
serving database, we wanted to find a practical value of 𝜀𝜀. To do 
so, we ran a windowed moving average over the electricity demand 
model for several values of 𝜀𝜀. The results are shown in Figure 6. 
 

 
 

Figure 6: Moving average of electricity demand for a house-
hold with various values of 𝜺𝜺.  

For larger values of 𝜀𝜀, the amount of noise added is relatively small 
and does not conceal the peak usage around 430 minutes after mid-
night, whereas, for 𝜀𝜀 = 0.01, the noise added is enough to do so. 
However, this choice of 𝜀𝜀 increases the variance of the result in 
general. 
 
6.4.2 Interval Size 
The interval size is another parameter that affects the level of pri-
vacy, as it determines the number of steps for which noise is added 
over a window. YoctoDB tags tuples with timestamps on a micro-
second scale, so it is possible to use many different interval sizes to 
study the scaling effects on the noise. 
 
The results of selecting different interval sizes to data spaced at a 
minimum interval of 8.64 × 1011 microseconds apart can be found 
in Figure 7.  
 

 

Figure 7: Interval size versus noise added for weather data 
spaced 8.64 × 1011 microseconds apart with 𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 

As we can see, increasing the interval size eventually decreases the 
amount of noise added. This makes sense since the number of fresh 
samples of Laplace noise that is added to a particular data point is 
proportional to the binary logarithm of the number of time steps in 
an interval. Increasing the interval size decreases the number of 
steps in the interval, and as a result the data becomes less noisy. 
 
 
7. CASE STUDY: NEIGHBORHOOD 

ELECTRICITY DEMAND 
7.1 Introduction 
 
The main application of our data-stream management system is to 
process queries on household electricity demand. 
 
7.1.1 Motivation 
With the prevalence of smart metering, homeowners have a justi-
fied concern about outsider access to their electricity usage at such 
a fine-grained level. 
 
There have been some research papers that demonstrate the possi-
bility of determining exactly what one is actively doing in their 
home based on the fluctuations in their electricity demand [11, 12]. 
For example, it is possible to determine what specific appliances 
are in use at any moment in time. 
 
Our intention is to demonstrate the effectiveness of an additional 
protective measure, in combination with an encryption scheme be-
tween the electricity company and the smart meter itself, by adding 
random noise to the electricity demand. When the private or ap-
proximate average usage of each household is totaled—over a suf-
ficient number of households—the error term is dominated and the 
aggregate is accurate [13, 14], despite having been computed from 
individual noisy averages. This allows the electricity company to 
make resource-allocation decisions on the neighborhood level 
without completely sacrificing privacy of homeowners [15]. 
 
7.1.2 Electricity Demand Model 
The Richardson model of domestic electricity use [16] is fairly 
comprehensive. From this model, we generated 5 characteristic 
household electricity usage patterns by randomizing the occupancy 
and appliance models. Each noisy average is seeded differently to 
produce a set of 30 privacy-preserved electricity demands. 
 
7.2 Individual Results 
 
In Figure 8 we see the results of applying an 𝜀𝜀-differentially private 
moving average on an individual household’s electricity usage. We 
selected 𝜀𝜀 = 0.01 as discussed in §6.4.1. 

 
Figure 8: 𝜺𝜺-differentially private vs. non-private moving 

average of electricity demand for a single household. 
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With 𝜀𝜀 = 0.01, the noise added is just enough to mask the peak 
usages at around 500, 600, and 1300 minutes after midnight (and 
create false peaks at other times), which should be satisfactory for 
a household wanting to obscure their true electricity usage. 
 
7.3 Neighborhood Totals 
 
Each of the 30 different households has a noisy electricity usage 
similar to Figure 8, and the sum of these series yields the total av-
erage neighbor usage, as shown in Figure 9.  
 

 
 

Figure 9: Total average electricity demand usage for a 
neighborhood of 30 households. 

 
Notice that there is still a significant deviation from the true sum. 
Our explanation and further approach can be found in §7.5. 
 
7.4 Cost of Privacy 
 
One way to study privacy-preserved electricity demand in a realis-
tic setting is with a kind of “box” connected to the circuit breaker 
that receives the actual electricity demand. Suppose that this box 
contains a car battery and a diesel generator, in order to both in-
crease and decrease the electricity demand, respectively. This al-
lows one to transform their true electricity demand to one that is 
privacy-preserved, which is transmitted to the electricity company. 
 
When the privacy-preserving algorithm has the noisy electricity us-
age greater than the true usage, the car battery charges to draw more 
electricity; similarly when the noisy usage is less than the true us-
age, the generator powers the home to reduce usage from the grid. 
 

 
Figure 10: Shaded difference of 𝜺𝜺-differentially private vs. 

non-private moving average of electricity demand  
for a single household. 

The monetary cost of privacy is the dollar amount required to trans-
form the true electricity demand into the one yielded by the privacy-
preserving algorithm. 
 
To view the relationship of the cost of privacy with the level of 
privacy, we constructed the regression found in Figure 11 by taking 
the difference integral between the actual and privacy-preserved 
electricity demand. We assumed that the generator runs for 81.25 
kWh/gal with the cost of diesel at $4.025/gal, and the cost of elec-
tricity is 15.34¢/kWh per day (in California) [17, 18, 19]. 
 

 
 

Figure 11: Average cost per day of a privacy-preserving box 
for different values of 𝜺𝜺. 

 
Observe that decreasing 𝜀𝜀 by a factor of 10 increases the cost of 
privacy by a factor of 10. 
 
7.5 Discussion 
 
For our particular usage models, we require 𝜀𝜀 to be at most 0.01 in 
order to sufficiently conceal the largest peaks in electricity usage. 
However, we see that the privacy-preserved electricity demand is 
still not accurate enough for use by the electricity company on a 
neighborhood level. By applying the Central Limit Theorem, this 
simply means that for 𝑛𝑛 = 30, the noise added is still not dominated 
by the expectation. Instead, we predict that on the order of 𝑛𝑛 =
100, there is convergence in distribution, which is a more realistic 
size for a suburban neighborhood. 
 
Accuracy can also be improved by increasing 𝜀𝜀, since less noise is 
added. So it may be worthwhile to examine other models of domes-
tic electricity usage (or real data if available) and determine 
whether the required 𝜀𝜀 is in fact greater than 0.01. However, such 
is likely not the case. 
 
The cost of privacy ultimately found is also quite expensive. For 
our recommended 𝜀𝜀 = 0.01, a household would need to pay $3.04 
per day to protect their privacy using the technique described in 
§7.4, which comes to about $90 per month. Since the average elec-
tricity bill of a household in the United States ranges from $80 to 
$110, this essentially doubles the cost of electricity for homeown-
ers. Therefore, as it stands, this is not a practical proposal. 
 
One significant improvement to our estimated cost is to take ad-
vantage of the charged battery, such that, whenever possible, its 
charge is depleted rather than turning on the generator. The deci-
sion-making model for doing so is potentially more complex, as the 
battery would also have a limited amount of capacity. Regardless, 
this alternative approach transforms the model into one of essen-
tially pre-paying for electricity, rather than paying for unused elec-
tricity to preserve privacy.  

-30
-20
-10

0
10
20
30
40
50
60

El
ec

tri
ci

ty
 D

em
an

d 
(k

W
)

Minutes after midnight (min)
0         200      400 600      800      1000     1200     1400

0.01

0.1

1

10

100

0.001 0.01 0.1 1

A
ve

ra
ge

 c
os

t p
er

 d
ay

 
($

/d
ay

)

ε

cost = 0.0304 ⋅ 𝜀𝜀−1
𝜀𝜀 = 0.01 
non-private 

El
ec

tri
ci

ty
 D

em
an

d 
(k

W
) 



8. CONCLUSION 
8.1 Further Work 
 
Although we completed our implementation as proposed, there are 
some further improvements and additions that can be made should 
we decide to continue the project. 
 
8.1.1 Parser and CQL 
Currently, writing queries for YoctoDB involves manual specifica-
tion of each node in the query plan. This procedure if done via CQL 
would improve the ease of writing queries. For example, a query 
expressed in the form ≪SELECT product, AVERAGE(price) FROM 
stream GROUP BY product≫, can be parsed and tokenized into our 
current representation. 
 
8.1.2 Additional Operators for Data Privacy 
Presently, we have implemented three operators that are 𝜀𝜀-pan-pri-
vate: COUNT, SUM, and AVERAGE. A further extension of YoctoDB 
is to add more complex operators, such as VARIANCE. This would 
first require a proof that indeed such an operator satisfies the pri-
vacy constraints, before it is implemented. 
 
8.1.3 Load-Shedding 
Since an input stream is generally not a Poisson process, the system 
may experience latency if a large “burst” of data is received in a 
small timeframe. A known way to handle a large volume of data is 
to randomly drop tuples from the stream based on feedback of the 
system performance and other factors about the data itself. We pro-
pose to implement this as another process—receiving input from a 
self-monitoring query—that sits between the input stream and the 
listeners of said input stream. 
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